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Abstract 

Statistical modelling of road traffic accidents forms the original insight and 

implementation for road safety policies. Recently, there is an emerging trend to more 

progressively analysing road traffic accidents data using time series techniques. 

However, with sophisticated tools utilized for identification and optimally fitting time 

series models, it is important to bear in mind the possible bias in the resulting 

responses. The purpose of this study is to evaluate optimal time series models for 

determination orders of parameters in the road traffic accidents data compared to the 

manual process. Time series traffic accidents data were gathered for eighteen years 

from secondary sources, and statistical time-series analyses were performed. Time 

series decomposition, stationarity and seasonality were checked to identify the 

appropriate models for road traffic accidents. Meanwhile, optimally analysis of data 

was conducted with a comparison of both the results. AIC, BIC and other error values 

were used to choose the best models and model diagnostics tools were applied to 

confirm the statistical assumptions. SARIMA(0,1,2)(1,0,2)12 and 

SARIMA(0,1,2)(0,0,2)12 models resulted the best models manually and automatically, 

respectively. The diagnostic process showed that SARIMA(0,1,2)(1,0,2)12 performed 

better than the optimal model. Therefore, the modellers who prefer to use the optimal 

function as a tool for time series model selection should consider the model's accuracy. 

It would be better for assessments to compare a variety of models and select the one 

having the best goodness of fit. 
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Introduction 

Road traffic accidents (RTA) cause severe problems for the societies in developed 

as well as developing countries and result in loss of lives and high cost. RTAs are one 

of the prime reasons for fatalities and disabilities globally that resulted in high 

economic burden. Indeed, by 2030, road traffic accidents are expected to be the fifth 

main cause of death globally (Mannering & Bhat, 2014). 

For decades, statistical analysis and modelling have been playing a significant role 

in getting insights from road traffic accidents data. Practitioners in this field encourage 

to use statistical modelling, analysis and forecasting to identify the root causes of 

problems and establish a foundation for evolving policies and economics-based 

interventions (Zhang, Pang, Cui, Stallones, & Xiang, 2015) 

Therefore, time series analysis has encountered immense applicability on a massive 

scale. Prior to that, statisticians used descriptive methods and informal arguments for 

analysis. Time-series models for continuous variables like ARMA (autoregressive 

moving average) and ARIMA (autoregressive integrated moving average) models, 
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popularized in the landmark work by George Box (Box & Jenkins, 1970), have been 

explored well over the years. However, still, these time series models find novel 

applications like the one used to model count data (Quddus, 2008). In addition, a 

growing number of studies in road safety employed time series models for forecasting 

the number of road traffic accidents, injuries or deaths.  

There are several tools and software that utilize state-of-the-art research in 

analysing RTA. Statisticians and practitioners in a road traffic accident (RTA) research 

have majorly been using R based tools for their models like time series analysis. 

However, with such sophisticated tools utilizing identification and optimally fitting 

time series models, it is still important to bear in mind the possible bias in their 

responses. The purpose of this study is to evaluate optimal (automatic) time series 

models, obtained using auto. arima( ) function in open source R tools. The order values 

of parameters determined in this manner for the road traffic death data are compared to 

the manual process, and the outcome diagnostics are performed. 

In the current age where detailed real-time data collected over time for RTAs can 

be gained at frequently low cost, time-series models can be well-suited to get novel 

perspective on RTA research and classic safety issues (Lavrenz, Vlahogianni, Gkritza, 

& Ke, 2018). However, Cryer et al. (Cryer & Chan, 2008) pointed out the potential 

problems when practitioners are looking to find an appropriate model for time series 

data through diagnostics of suitable criteria. Along with the development of ARIMA in 

their milestone work (Box & Jenkins, 1970), the authors Box and Jenkins also 

suggested a process for identifying, estimating, and checking models for a specific 

time-series dataset. Referred to as the Box-Jenkins Method in the updated edition of the 

book (Box, Reinsel, & Ljung, 2015), this is the process of stochastic model building 

with an iterative approach that consists of the following three essential steps: 

• Model Specification. Using the data and all related information to help select a 

sub-class of the model that may best summarize the data.  

• Model Fitting/Estimation. Use the data to train and estimate the parameters of 

the model (i.e. the coefficients).  

• Model Diagnostics/Checking. Evaluate the selected fitted model in the context 

of the available data and check for areas where the model may be improved. 

It is an iterative process so that we continually loop through this cycle as new 

information is gained during diagnostics and incorporate that information into new 

model classes. The approach starts with the assumption that the process that generated 

the time series can be approximated using an ARMA model if it is stationary or an 

ARIMA model if it is non-stationary. Once a suitable model is fitted, diagnostic 

checking of the model is performed, which concerns evaluating the quality of the 

model. This ensures that the fitted model has reasonably well-satisfied the underlying 

assumptions. However, if there are no inadequacies found, the model fitting is assumed 

to be complete, and the model can then possibly be used to forecast future values. 

Otherwise, in the case of inadequacies, another model is searched, and thus, we return 

to the model specification step again (Cryer & Chan, 2008). 

Diagnostic time series model is crucial to examine the goodness of fit for the 

tentative model. Evaluation criteria such as Akaike Information Criterion (AIC) and 

Bayesian Information Criteria (BIC) have been used as a vital tool for selecting the best 

time series model from the group of models (Ham, et al., 2017; Raeside & White, 2004; 

Ozaki, 1977). To ensure that the selected model reasonably satisfies the underlying 

assumptions, it is necessary to apply diagnostics checking for evaluating the quality 

performance of the model. Consequently, the model can be used for forecasting if it 

scores fairly accurate, or otherwise, we return to the identification step again (Cryer & 
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Chan, 2008). For checking the adequacy of the fitted time series model, the residual 

diagnostics information is also quite useful. When the residuals behave like white noise, 

the model is adequate (Lavrenz, Vlahogianni, Gkritza, & Ke, 2018; Cryer & Chan, 

2008). There are several types of forecast-residuals to assess the accuracy of the time 

series (Hyndman & others, 2006). Therefore, our study evaluates time series models 

with the following very commonly used data analysis error metrics: root means square 

error (RMSE), mean absolute percentage error (MAPE) and mean absolute scaled error 

(MASE). At a more detailed level, using ACF and PCAF plots of the time series 

residuals may suggest whether the residuals are uncorrelated. 

Furthermore, there are several tests that are extremely useful as diagnostic to the 

residuals' correlation such as; the Ljung-Box test (Zhang, Pang, Cui, Stallones, & 

Xiang, 2015), Box-Pierce test (Szeto, Ghosh, Basu, & O’Mahony, 2009), Portmanteau 

lack of fit test (Manikandan, Prasad, Mishra, Konduru, & Newtonraj, 2018; Parvareh, et 

al., 2018). In this era, the sophisticated tools and developed software encourage 

modellers to apply complicated evaluation and tests of statistical models 

Rest of the paper is structured as follows. The second section describes the 

literature review, narrating the state-of-the-art of the field by describing the notable 

work done by the researchers. Section three provides a brief introduction to the theory 

of ARIMA, followed by the description of evaluation metrics. Section four provides the 

crux of our research contribution with a discussion about the data and the results 

achieved. Finally, the last section concludes the presented work summarising the key 

takeaway points. 

 

Methodology 

Time series model 

An ARIMA (p, d, q) model for a time series sequence  can be 

written as 

 
where p is the order of the AR process, d is an order of differences, q is the order of the 

MA process,  is the white noise sequence,  is a polynomial of degree p, B is a back 

shift operator, and  is a polynomial of degree q. 

However, an ARIMA model could not analyse time series with seasonal 

characteristics; therefore, seasonal autoregressive integrated moving average 

(SARIMA) models have been developed (Zhang, Pang, Cui, Stallones, & Xiang, 2015). 

SARIMA models perform better than the traditional average, linear regression, and 

simple ARIMA models for data with seasonal variations. In fact, SARIMA models are 

capable of considering the trend and seasonality. A SARIMA (p,d, q)(P, D,Q)s the 

following equation can write model 

 

where , , P, D and Q are seasonal counterparts of , , p, d and q, respectively, ands 

is the seasonality. 

Time series diagnostic tools 

Statisticians established some tools to employ for diagnosing time series models. 

One of those, Akaike Information Criterion (AIC) is defined as 

 
where L is the maximized likelihood, and K is the number of parameters. AIC is used to 

obtain the order of the times series models (p, d, q, P, Q, D) which are the coefficients 



Al-Hasani et al./IJASE Volume 2 (2019) 

22  

for ARIMA(p, d, q)(P, D, Q)s model. Another diagnostic metric, Bayesian Information 

Criteria (BIC) is defined as 

 
where L is the maximized likelihood, K is the number of parameters, and n is the 

number of data points in the time series. The root means square error (RMSE)metric is 

the standard deviation of the residuals, represented by the equation, 

 

where  is the sample size,  are the forecast values, and  are the observed 

values. The mean absolute percent error (MAPE) measures the size of the error in 

percentage terms. It is calculated as the average of the unsigned percentage errors, as 

identified by the equation, 

 
The mean absolute scale error (MASE) is used to compare models of a time series 

through scale-free for assessing forecast accuracy across series (Hyndman & others, 

2006). MASE is identified as the equation, 

 

where  and the output values are independent of the scale of the data.   

Here if the output MASE value is less than one, it points to better forecasting. 

Alternatively, when the MASE value is greater than one, that indicates worse forecast 

for the time series data. 

This study is employing the Ljung-Box test [Eq(6)] for testing and diagnosing the 

residuals of time series, which is defined as, 

 

where n is the sample size,  is the autocorrelation, K is the lags, and h is the lags 

to be tested. 

Data 

The fatal accidents data for this study has been collected from secondary sources in 

the Sultanate of Oman. Monthly fatal accidents were used from January 2000 to 

December 2018. R version 3.5.2 is used for time series data analysis. 

 

Results and discussion 

A total of 228 observations of time series data were analysed in this study. This 

time series represents the number of road traffic deaths every month in Oman from 

January 2000 to December 2018. Code implementation details and further analysis of 

presented research work are available online in the GitHub repository5. 

Over the past 18 years, the number of people killed on the road has risen from the 
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lowest of 23 in September 2000 to a peak of 141 deaths in August 2012, as shown in 

Figure 1. From the Figure (Figure 1), we conclude that this time series is non-

stationary. Moreover, Augmented Dickey-Fuller test results of Dickey-Fuller = -1.7893, 

Lag order = 6and p-value = 0.6644 indicate that the time series model needs to be 

stationary, which in turn suggests using difference. Therefore, the primary focus is to 

develop a suitable ARIMA model for this time series. Ham et al. (Ham, et al., 2017) 

suggested to use auto. arima() functions to conduct a search for all possible models and 

to determine the order of parameters for the ARIMA model. Applying this function to 

RTD data in Oman, SARIMA (0,1,2)(0,0,2)12resulted as the best model. Hence, the 

optimal time series model was SARIMA (0,1,2)(0,0,2)12, which is seasonal for the 

current time series data. 

 
Figure 1: Road Traffic Deaths in Oman from 2000 to 2018 

A different perspective on the auto. arima( )R function is provided by following the 

essential process to analyse time-series data as mentioned earlier in the literature 

review(Ham, et al., 2017). Also, this study used the same software R version 3.5.2 to 

conduct RTDs time series analysis by following the three main steps. Because of non-

stationary time series curve, significant seasonality was found (as shown in 

figureFigure 1), it is necessary to take one difference (d=1) to be the stationary time 

series at lag1. Therefore, the primary focus in the next step was to fit suitable seasonal 
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ARIMA models in this time series. Supported by AIC and BIC values, several 

SARIMA models were fitted, and orders were estimated as shown in Table 1. As a 

result, the best time series model found is (0; 1; 2)(1; 0; 1)12 due to lowest AIC and BIC 

values, 1812 and 1829 respectively. As shown in Table 1, even though the (0; 1; 2)(1; 

0; 2)12 model was the same model generated optimally by auto. arima \( ) function in 

the forecast R package; it has not got the lowest AIC (1815) and BIC (1834) values. 

 

Table 1: Assessment of different models for RTD data in Oman 

Model AIC BIC RMSE MAPE MASE 

(0,1,2) (1,0,1)12 1812 1829 12.69 16.57 0.69 

(0,1,2) (1,1,2)12 1814 1834 12.66 16.6 0.69 

(0,1,1) (1,0,2)12 1816 1833 12.73 116.82 0.7 

(0,1,3) (1,0,2)12 1815 1839 12.66 16.6 0.69 

(0,1,2) (0,0,2)12 1815 1833 12.83 16.84 0.7 

(0,1,2) (1,0,2)12 1815 1834 12.66 16.6 0.69 

 

Table 2: Comparison optimal and manual models for RTD data in Oman 

Type Model AIC BIC RMSE MAPE MASE 

Manual (0,1,2) (1,0,1)12 1812 1829 12.69 16.57 0.69 

Optimal (0,1,2) (0,0,2)12 1815 1834 12.83 16.84 0.7 

 

In the final step, it is important to highlight the performance of both model’s 

support of time series diagnostic outcome. The comparison between both models is 

done in terms of root mean squared error (RMSE), mean absolute percentage error 

(MAPE) and mean absolute scale error (MASE) as depicted in Table 2. Apparently, the 

basic diagnostic tools obtained through manual model outperformed the optimal models 

due to the lowest obtained values of RMSE (12.69), MAPE (16.57) and MASE (0.69). 

These suggest that the manual model has higher goodness values and higher accuracy 

than the optimal time series model. Moreover, the autocorrelations of the residual’s 

diagnostics were checked by applying the Ljung-Box test for both models. Ljung-Box 

test obtained insignificant residual’s correlation with both models. Manual model’s 

residual results(Q=14.21, df=20, and p-value=0.82) were obtained by Ljung-Box test 

and the values (Q=14.66, df=20, and p-value=0.80) belong to optimal model's residuals. 

In comparison, the estimation of the parameters of manual and optimal time series 

models, both of them have significant parameters, as shown in Tables (Table 3 and 

Table 4). However, the manual model’s parameters were found to be more significant 

(Table 3) than the optimal model's parameters (Table 4). Consequently, parameters 

generated by the manual time series model were affected more significant than the 

parameters generated by the optimal model. This indicates that the manual model had 

slightly better performance with time-series data. The study has unconfirmed the 

findings of (Ham, et al., 2017) that was employed auto.arima() function to determine 

the time series model.  
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Table 3: Parameters estimates and their testing results of the Manual model 

 Estimate Std. Error z value Pr(> |z|)  

ma1 -0.909957 0.064616 -14.0824 < 2.2e-16 *** 

ma2 0.145944 0.063576 2.2956 0.0217 * 

sar1 0.926239 0.102212 9.0620 < 2.2e-16 *** 

sma1 -0.818673  0.162108 -5.0502 4.414e-07 *** 

ˍ ˍ ˍ      

Signif. codes: 0 `***´ 0.001 `**´ 0.01 `*´ 0.05 `.´ 0.1 ` ´ 1 

 

 

Table 4: Parameters estimates and their testing results of the Optimal model 

 

 Estimate Std. Error z value Pr(> |z|)  

ma1 -0.884333 0.064171 -13.7810 < 2e-16 *** 

ma2 0.127946 0.064044 1.9978 0.04574 * 

sma1 0.135269 0.067033 2.0179 0.04360 * 

sma2 0.182493 0.073128 2.4955 0.01258 * 

ˍ ˍ ˍ      

Signif. codes: 0 `***´ 0.001 `**´ 0.01 `*´ 0.05 `.´ 0.1 ` ´ 1 

 

 

Conclusion 

In this investigation, the aim was to assess optimal (automatic) time series models, 

generated by auto.arima( ) function in R. This paper has analysed the diagnostics of 

time series models and compared the diagnostic checking of optimal time series models 

to the manual ones. Time series data considered in the study represented monthly road 

traffic deaths in Oman from January 2000 to December 2018 with a total of 228 

observations. These data were found to represent a non-stationary time series curve, 

significant seasonality, confirmed by Augmented Dickey-Fuller test. 

Moreover, it was also shown that in an operational scenario, SARIMA 

(0,1,2)(0,0,2)12 model resulted as the optimal model in this time series data. One of the 

more significant findings emerged from this study was that AIC, BIC values obtained 

for the model (0; 1; 2)(1; 0; 1)12had the best goodness of fit which was better than other 

models (including the optimal one). The primary diagnostic tools obtained through 

manual model outperformed the optimal model with the lowest values of RMSE 

(12.69), MAPE (16.57) and MASE (0.69). Furthermore, by checking residual 

diagnostics for both models, residuals of an optimal model are found less accurate than 

the manual one, even though there is insignificant autocorrelation of residuals for both 

models. In general, these findings suggest that the manual model has higher accuracy 

than the optimal time series model. The results of this research support the idea that 

practitioners may operate the auto.arima() function from the forecast R package with 

high consideration of different models. It is highly recommended to assess and compare 

several models and employ diagnostic tools. Further research in this field, especially in 

forecast R packages, would be of great help to the computing discipline.
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