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Guided kernel density estimator and the gamma kernel estimator 
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Abstract 

Parametrically guided nonparametric estimation is a method that allows improving the bias of a 

nonparametric estimator by using a parametric pilot estimator. Talamakrouni (2016) generalize the 

parametrically guided nonparametric estimation to randomly right-censored data. The basic idea is to 

start with any parametric density estimator and then to adjust this first stage parametric approximation 

using a nonparametric kernel-type estimator of a particular correction factor. However, in many 

situations, using the classical kernel leads to the well-known boundary effect problem, that is, the 

estimator has a large bias near the endpoints. Bouezmarni (2011) proposed a gamma kernel estimator 

that corrects for the boundary effects. In this paper we perform a comparison between the guided kernel 

density estimator, based on Kaplan-Meier (1958) estimator and the gamma kernel estimator, for both 

the density and the hazard function via a Monte Carlo simulation, the finite sample performance of the 

estimators is investigated under various scenarios. 
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Introduction 

Censored data arise in many contexts, for example, in medical follow-up studies in which the 

occurrence of the event times (called survival) of individuals may be prevented by the previous 

occurrence of another competing event (called censoring). The estimation of the probability density 

and hazard function has received considerable attention in such studies, as it allows visualizing and 

exploring the distribution of data. There is a large variety of approaches to estimate the density and 

the hazard functions that are parametric, nonparametric, semi parametric and method which use 

aspects from both the nonparametric and the parametric school. Few of this method have been 

investigated in the presence of censoring mechanism. 

The parametric approach has the advantage of being powerful by its n rate of convergence and 

also precise when the chosen family is correctly specified. However, a major complication that is 

emphasized in parametric modeling is the risk of biased and inconsistent parameter estimation due to 

misspecification problem. In the fully nonparametric approach, the estimators suffer from the curse of 

dimensionality and have in general a slower rate of convergence. However, despite its drawbacks, 

nonparametric approach provides more flexibility since the estimation is not based on any 

parameterized family of functions and remains more robust and applicable in practice. 

Based on the Kaplan-Meier estimator, several nonparametric density estimators have been 

proposed in the literature. A popular approach for estimating the density function and the hazard rate 

function is done using a fixed symmetric kernel density with bounded support and a band width 

parameter, Blum and Susarla (1980). The kernel determines the shape of the local neighborhood while 

the bandwidth controls the degree of smoothness. Sabine and Stute (1988) investigated the kernel-type 

nonparametric estimator in the presence of right-censoring. However, when the density function of the 

data has a bounded support, using the classical kernel leads to an estimator with a large bias near the 
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endpoints. The problem of bias is called also the boundary effect. Boundary effects are well known to 

be a disturbing nuisance for applications as well as for global measures of performance of kernel 

estimators. The reason that boundary effects occur for unmodified kernel estimators is that the curve 

to be estimated has a discontinuity at an endpoint, so that the usual bias expansion which depends on 

smoothness assumptions cannot be carried out anymore. This is especially the case in survival analysis, 

since the survival time is assumed to be nonnegative variable. There have been various efforts to 

modify kernel estimators near boundaries in order to reduce the impact of these boundary effects. 

Bouezmarni (2011) proposed a gamma kernel (GK) estimator that corrects for the boundary effects. 

In the fully nonparametric approach, the estimators have a slower rate of convergence. The 

parametric approach has the advantage of being powerful by its n rate of convergence but in 

parametric modeling is the risk of biased and inconsistent parameter estimation due to misspecification 

problem. Usually, even when the proposed model is misspecified, parametric estimation can provide 

valuable information about the phenomenon under study. This motivates the consideration of an 

approach called parametrically guided nonparametric estimation that contains both a parametric and a 

nonparametric component. The idea is to multiply an initial parametric density estimate with a kernel 

type estimate of the necessary correction factor. A guided nonparametric estimator is completely 

nonparametric in the sense that it does not rely on any assumed global structure. On the other hand, a 

guided nonparametric estimator takes advantage of both parametric and nonparametric methods: In 

the complete data case, considerable attention has recently been paid to parametrically guide 

nonparametric estimation in the literature. The starting point for this method was Hjort and Glad 

(1995), who introduced the parametric guided kernel (PGK) scheme and proved the bias reduction 

property of their guided estimator in the context of density estimation. Talamakrouni, Keilegom and 

Ghouch (2016) adapt and generalize the parametrically guided nonparametric estimation to the 

censored data case. 

The paper is organized as follows. Section 2 introduces the gamma kernel estimators and 

parametrically guided nonparametric estimation for the density and the hazard rate function for right-

censored data. In Section 3 we show the asymptotic properties. Via a Monte Carlo simulation, the 

finite sample performance of the estimators is investigated under various scenarios in Section 4. 

Methodology 

Let 1,....., nT T  (survival times) be independent and identically distributed (i.i.d) nonnegative 

random variables with density f and common distribution function F. Let 1,....., nC C  be a censoring 

variable with continuous distribution function G. Under random right censoring, instead of observing 

Ti, one can only observe ( , )i iX   where min( , )i i iX T C and ( )i i iI T C   . Based on Kaplan-

Meier estimator proposed by Kaplan and Meier (1958)several nonparametric density estimators have 

been proposed. 
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Blum and Susarla (1980) extended the traditional kernel-type nonparametric estimator to censored 
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where K is a kernel function generally chosen to be a symmetric probability density function,

0 nh h  is a bandwidth sequence and ˆ ( )F  is the Kaplan-Meier estimator.This method is totally 

nonparametric and admirably impartial to special types of shapes of the underlying density. However 

classical kernel leads to an estimator with a large bias near the endpoints. Bouezmarni (2011) proposed 

a gamma kernel estimator that corrects for the boundary effects, defined as follows: 
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where the kernel K is given by 
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The weights Wi are the jumps of F̂ at iX  (Suzukawa et al. (2001)).  
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The gamma kernel estimator for the hazard rate is  
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In the fully nonparametric approach, the estimators suffer from the curse of dimensionality and 

have in general a slower rate of convergence. However, nonparametric approach provides more 

flexibility since the estimation is not based on any parametrized family of functions and remains more 

robust and applicable in practice. The kernel estimator has a rate of convergence of nh , (Lo eta al. 

(1989)) which is slower compared with the n  rate of convergence established in the parametric 

approach. However, a major complication that is emphasized in parametric modeling is the risk of 

biased and inconsistent parameter estimation due to misspecification problem. 

Hjort and Glad (1995) proposed a new scheme that contains both a parametric and a nonparametric 

component, called parametrically guided kernel density estimator. The essential idea behind the guided 

estimation is to start with a crude parametric estimator which is not necessarily well specified, then to 

correct this parametric guide using a particular type of correction and a nonparametric estimator. A 

guided nonparametric estimator takes advantage of both parametric and nonparametric methods. It 

always converges to the true model no matter if the parametric part is correct or not, and it adapt 

automatically to the parametric model if the latter is locally or globally close to the true underlying 

curve. 

Talamakrouni, Keilegom and Ghouch (2016) adapt and generalize the parametrically guided 

kernel estimator to the censored data case defined as follows:  
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The parametrically guided kernel estimator for the hazard function is  

ˆ ˆ
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Asymptotic Properties 

In this section the performance of the guided kernel density estimator (5) is compared to that of 

the gamma kernel estimator (2). Both estimators have the bias reduction property and allows for a 

theoretically unbiased estimator. The multiplicative correction used in guided kernel density and 

hazard function does not affect the variance, the same for gamma kernel estimator. For parametrically 

guided kernel density estimator, the asymptotic bias and optimal bandwidth are: 
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For gamma kernel estimator the asymptotic bias and optimal bandwidth are: 
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In practice, the choice of the bandwidth is a crucial issue in kernel-based density estimation. To 

select the bandwidth h in our case, we use unbiased cross validation method (Scott D. W. and Terrell 

G. R., 1987), adapted to the censoring case.  

Simulations Results 

In this section is studied the finite sample performance of the guided kernel density estimator and 

the gamma kernel estimator. Our goal is to compare the performance of the guided kernel density 

estimator (5) with that of the gamma kernel estimator (2) and traditional kernel. The comparison is 

based on Bias, MSE and the optimal bandwidth h.  

The model considered is: the survival times follow a Weibull distribution with scale parameter 

b=2 and shape parameter a=1, 2, 4. The graphs of the resulting densities are plotted in Figure 1.  
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Figure 1: Weibull density with shape parameters a = 1, 2, 4 and scale parameter b = 2. 

 

The censoring times are also generated from a Weibull distribution with shape parameter a and a 

scale parameter given by 
1/((1 ) / ) ab p p  , ensuring a degree of censoring equal to p. We consider 

two censoring rates p=10% and p=40% and sample size n=200. For parametrically guided kernel 

density estimator, as a parametric guide we use the exponential density ( ) exp( )f t t     where   

is estimated using the approximated maximum likelihood estimator. The only situation where the guide 

is correctly specified is the case a=1, in the other cases the parametric guide deviates gradually from 

the true density. 

Table 1: Squared bias (*105), MSE (*105), the optimal bandwidth h, for the estimators of several 

Weibull densities for a= (1, 2, 4), two censoring rates p= (10%, 40%) and sample size n=200. 

  10%   40% 

a Method Bias MSE h   Bias MSE h 

1 PGK 0.09 110.7 8   1.67 189.7 7.9 

  GK 0.009 112.5 8   0.67 187.6 8.01 

  TK 22.98 99.2 9   28.65 260.4 9.01 

2 PGK 89 260.7 4.2   89 445.1 4.2 

  GK 87.99 244.3 4.5   87.99 446 4.46 

  TK 110.14 270.1 4        110.14     589.23 4 

4 PGK 87.2 344.2 3   87.2 587 3 

  GK 86.51 304.3     2.28   86.51 524.2 3.2 

  TK 210.5      689.99 3.9   210.5     890.98 4 

 

We get the best results for the PGK estimator when a=1(a correct parametric guide). The bias of 

the PGK estimator is significantly reduced compared to that of TKestimator, but GK estimator gives 

a smaller bias compared to both of them. Regarding the MSE, it is also reduced for the PGK estimator 

compared to the MSE of the TK estimator. MSE is also reduced for the GK estimator compared to the 

MSE of the TK and PGK estimator. For a=2 and a=4, even if the parametric guide is incorrect, the 

PGK estimator remains significantly better than the TK estimator, while the GK estimator has a 

significantly smaller bias than both the PGK and TK estimator.  
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Along the simulations we consider the Gaussian kernel function K (Hansen B, 2009) and, for every 

estimator, we only show the results corresponding to the optimal tuning parameters, i.e. those which 

minimize the empirical mean squared error (MSE). The choice of the bandwidth is made by unbiased 

cross-validation bandwidth selection method, adapted to the censoring case. 

Conclusion 

In this paper, we investigated a parametrically guided kernel and a gamma kernel estimator for 

censored data. The PGK estimatoris obtained by multiplying an initial parametric estimator by a 

nonparametric kernel type estimator of a suitable correction function. The simulation results confirm 

the bias reduction property. We showed that the bias of the PGK estimator and GK estimator can be 

reduced compared to that of the traditional kernel estimator, while the GK estimator has a significantly 

smaller bias than both the PGK and TK estimator. 
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